skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ren, Tusheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A thermo‐time domain reflectometry (thermo‐TDR) sensor combines a heat‐pulse sensor with a TDR waveguide to simultaneously measure coupled processes of water, heat, and solute transfer. The sensor can provide repeated in situ measurements of several soil state properties (temperature, soil water content, and ice content), thermal properties (thermal diffusivity, thermal conductivity, heat capacity), and electromagnetic properties (dielectric constant and bulk electrical conductivity) with minimal soil disturbance. Combined with physical or empirical models, structural indicators, such as bulk density and air‐filled porosity, can be derived from measured soil thermal and electrical properties. Successful applications are available to determine fine‐scale heat, water, and vapor fluxes with thermo‐TDR sensors. Applications of thermo‐TDR sensors in complicated scenarios, such as heterogeneous root zones and saline environments, are also possible. Therefore, the multi‐functional uses of thermo‐TDR sensors are invaluable for in situ observations of several soil physical properties and processes in critical zone soils. 
    more » « less